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ABSTRACT

Speech emotion recognition (SER) adds to the humane as-
pects of voice technologies to enhance user experiences. The
ground truth emotion annotations provided by human raters
and attributes related to the speakers themselves arise a com-
pounded fairness issue in SER. While there exist works in fair
SER, our work presents one of the first studies in address-
ing the unique joint speaker-rater (two-sided) bias, focusing
on the issue of gender fairness. Our cross-reference evalua-
tion demonstrates that the SER fair model, which merely mit-
igates one-sided bias introduces biases when examining from
another viewpoint. Furthermore, in order to handle model
stability when optimizing for these compounded speaker-rater
constraints, we introduce a flexible controlled mechanism that
dynamically balances the contribution of each viewpoint. Our
analyses show the efficacy of our approach in achieving a fair
SER that meets the dual speaker-rater gender neutrality crite-
rion.

Index Terms— speech emotion recognition, fairness,
gender neutrality, speaker-rater biases

1. INTRODUCTION

Emotion AI powered by speech emotion recognition (SER)
is rapidly shaping our next-generation voice technology [1].
Particularly, the humane aspect of SER profoundly transforms
user experiences into something more relatable and personal.
Yet, as SER becomes an integral part of our daily life and
even impacts many decision-making processes, ensuring fair-
ness of SER is critical for advancing responsible-AI appli-
cations [2]. A typical SER model is constructed by learn-
ing on datasets comprised of human speakers engaging in
spoken dialogs with human raters providing ground truth la-
bels [3]. SER is thus compoundly-biased as learning happens
on speech samples generated and rated by humans, inspir-
ing researchers to begin actively tackling the fairness issue
in SER (summarized in a recent review [4]).

These emerging works handle fairness issues of SER in
an “one-sided” manner, that is to mitigate biases arise due to
attributes of the speaker or rater only. For instance, Gorrosti-
eta et al. propose an adversarial invariant network to alleviate
SER biases attributed to speaker’s age and gender [5]. Simi-

larly, Gu et al. use an attribute predictor along with adversarial
training to ensure the gender neutrality of speaker’s acoustic
embedding [6]. Our most recent work [7] is the first that ad-
dresses SER biases induced by rater’s gender, shifting from a
common focus of speaker attributes to much less-studied rater
attributes. Despite these advancements, taking an one-sided
approach falls into another pitfall as a single viewpoint (e.g.,
speaker) of fairness ignores and even induces biases when ex-
amining from the other viewpoint (e.g., rater) [8].

While this one-sided issue is known, past literature has
pointed out a critical challenge in handling “two-sided” fair-
ness optimization, i.e., joint training naı̈vely by adding the
two constraints induces model conflict [9, 10]. This is likely
caused by the vast differences in the dual constraints, e.g., in
the case of SER, one constraint caters to raters (attributes of
multiple raters applying to each data sample) and the other
to speakers (attributes of speakers encompassing multiple
speech samples). The use of various invariant strategies
to achieve fairness under these dual constraints often pulls
the model in opposing directions, complicating the process
toward balanced and stable training [11]. Consequently, de-
veloping algorithms to achieve a fair SER system extends
beyond merely a single bias elimination but also generaliza-
tion across constraints. It is imperative to design a strategy
that carefully navigates and balances fairness when examin-
ing attributes from speakers and raters simultaneously.

In this work, we focus on the study of gender-neutral
SER by jointly considering speaker-rater fairness. First, by
adopting the use of cross-evaluations scheme [12] (termed
as inter-fairness and intra-fairness [13]), our analysis shows
that the one-sided fair SER model does not generalize well
across different viewpoints, and further direct joint training
on these two one-sided fairness constraints destabilizes the
SER model. With these insights, we propose a balancing
speaker-rater fairness mechanism toward realizing gender
neutrality. It works by explicitly calculating the distribu-
tional distances between latent embeddings derived from a
speaker fair model and a rater fair model as a flexible weight,
which helps dynamically adjust the contribution of the two
one-sided fair constraints at joint learning. Our experimental
results reveal that our balancing mechanism stands as a robust
arbitrator, effectively mediating the nuances between speaker
and rater fairness constraints.
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Fig. 1: Overview of the fair speech emotion recognition
(SER) architecture using both one-sided and our proposed
two-sided learning frameworks. The one-sided debiased em-
bedding is first trained independently, then we compute the
WD distance between these embeddings per batch to derive
the flexible control parameter α, which adjusts the other side’s
contribution dynamically. Finally, the two-sided fair SER
model is batch-wise optimized by the LTotal.

Table 1: Emotion distribution in the bias set.
Overall Neutral Happiness Anger Sadness Frustration

S1 7362 1706 1633 1099 1080 1844
S2 4324 1323 446 628 628 1299

2. FAIRNESS ANALYSIS: ONE-SIDED MODEL

2.1. Dataset
The IEMOCAP dataset [14] is a benchmark SER corpus with
a gender balance (one male and one female) in each of its
five dyadic spoken interaction sessions. There are six unique
raters (two males and four females) that rate the emotions.
The consensus labels are obtained based on the plurality rule.
Aligning with most conventional SER research, our work
treats emotion detectors as the primary task and specifically
targets samples labeled with five emotion categories: Neutral,
Happiness, Anger, Sadness, and Frustration.

2.1.1. Study Sets
There is a total of 7362 utterances comprising the five pri-
mary categorical emotions. In this work, we focus our study
on two different sets of data: S1 (the whole dataset), which
includes the entire speaker set in the IEMOCAP (a total of
7362 samples included). This set is used for the speaker-side
gender fairness study; S2 (the rater-gender biased set), which
includes those samples where the ground truth labels align
with the emotion annotation given by either the male rater or
female rater only, indicating rater biases. This set is used for
the rater-side gender fairness study, which includes a total of
4323 samples. S2 is identical to the set used to study the gen-
der bias of raters in our previous work [7]. Table 1 presents
the emotion label distribution of S1 and S2 used in our study.

2.2. Cross Evaluation of One-sided Models
In this section, we present our analysis on cross referencing
one-sided gender-neutral fair model to examine the generaliz-
ability of these models. We first describe the construction of

the corresponding one-sided fair SER, then examine the fair-
ness of these models in a cross-evaluation scheme including
two experiments: intra-fairness and inter-fairness analysis.

2.2.1. Acoustic Features

We use the Huggingface framework [15] to extract 768-
dimensional latent wav2vec 2.0 [16] vectors as the acoustic
features. This pre-trained audio encoder can directly em-
bed information from raw audio, transforming the waveform
into the embedding. All features undergo speaker-wise z-
normalization.

2.2.2. One-sided Fair SER Model

We construct two one-sided fair models, one for rater and
another for speaker viewpoint. In terms of debiasing rater-
side gender attribute, we utilize the model most recently pro-
posed [7]. This model, Fairrat, produces gender-debiased
representations by using three loss functions: one for pre-
dicting ground truth emotional labels (LR), another for mini-
mizing the distance between gender class in the feature space
(LD-R), and the third for detecting gender from embedding
(LAdv). In summary, the Fairrat parameters are optimized us-
ing the following loss function with a hyper-parameter λR:

LRAT = LR − LAdv + λRLD-R, (1)

For speaker-side, we construct a similar framework as
Fairrat by using a fairness constraint contrastive framework
to train the gender debiasing model Fairspk. Thus, Fairspk
integrates the same three types of loss functions as well. The
first loss is LS, which corresponds to the standard cross en-
tropy loss associated with the SER task. We further measure
the Wasserstein Distance (WD) [17] between male speaker’s
features and female speaker’s features as the optimization ob-
jective (LD-S). To achieve a gender-neutral embedding, we
employ a contrastive loss [18] that captures gender informa-
tion into the embeddings. Given xi as the speaker-bias em-
bedding of the inputs with the encoder, we identify positive
samples as those embeddings sharing the same gender as xi

and negative samples as the set of embeddings with the oppo-
site gender. With the aim of eliminating the gender-specific
information in the speaker-bias embedding, this loss Lcl is
subtracted from the emotion detection network. Hence, the
parameters of Fairspk are trained by minimizing the follow-
ing loss function with the hyper-parameter λS:

LSPK = LS − Lcl + λSLD-S, (2)

We train five binary emotion detectors for each of these
two “one-sided” fair models. All of them are trained by set-
ting the decaying factor at 0.001, the dropout is set to 0.2. We
use the Adam optimizer with a 0.001 learning rate to opti-
mize the parameters and train models for 500 epochs with a
32-fixed batch size.

2.2.3. Cross Reference Analysis
We conduct two experiments to evaluate the effectiveness of
the one-sided gender-neutral models. Note that for all ex-
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Table 2: Results of the recognition performances and fairness metrics on the one-sided model. Green backgrounds represent
fairness evaluation from the speaker-side gender perspectives, while yellow highlights rater-side gender fairness evaluations.

Neutral Happiness Anger Sadness Frustration
F1(%) ∆SPspk ∆SPrat F1(%) ∆SPspk ∆SPrat F1(%) ∆SPspk ∆SPrat F1(%) ∆SPspk ∆SPrat F1(%) ∆SPspk ∆SPrat

DNN 77.73 0.452 0.649 70.00 0.511 0.428 76.44 0.378 0.389 82.28 0.359 0.169 63.54 0.385 0.626
Fairspk 70.68 0.226 0.488 65.80 0.380 0.366 73.26 0.234 0.379 75.50 0.260 0.208 63.34 0.301 0.550
Fairrat 68.80 0.403 0.352 65.14 0.691 0.126 75.68 0.372 0.189 76.84 0.291 0.088 70.22 0.411 0.448

(a) Fairspk /
speaker-gender

(b) Fairspk /
rater-gender

(c) Fairrat /
rater-gender

(d) Fairrat /
speaker-gender

Fig. 2: The t-SNE scatter plot of Fairspk (a)(b) and Fairrat
(c)(d) from Anger detector. We color the points according to
gender distribution from either the speaker-side or rater-side.

periments, a session-independent cross-validation scheme is
applied. We present the recognition performances as well as
fairness metrics for the two one-sided fair models (Fairspk and
Fairrat). Our target emotion labels are derived from voted
ground truths, and the emotion recognition performance on
S1 is evaluated by the weighted F1-score. The fairness met-
ric, statistical parity score [19] (ideal = 0), is evaluated on both
study sets, S1 for speaker-side and S2 for rater-side, which is
further denoted as ∆SPspk and ∆SPrat respectively. The par-
ity metric quantifies whether our model favors one gender cat-
egory over another when performing prediction. The cross-
reference analysis involves two distinct evaluation schemes
to assess the generalizability in the fairness of the models:
• Intra-Fairness: We evaluate the one-sided gender-neutral

fairness in their own corresponding viewpoint, i.e., using
∆SPspk for Fairspk and ∆SPrat for Fairrat.

• Inter-Fairness: Based on the one-sided fair models, we
evaluate the fairness metric of one-sided using the model of
the other. This means using ∆SPspk for Fairrat and ∆SPrat

for Fairspk.

Table 2 shows the results of the recognition and fairness
performances. We also train a vanilla three-layer DNN model
without any fairness constraint to provide a reference on
the assessment of the intra and inter-fairness of Fairspk and
Fairrat. We highlight the inter-fairness evaluation (yellow for
rater’s perspective and green for speaker’s perspective). We
observe that the fair model does not transfer well in address-
ing fairness issues from another perspective. Specifically, the
speaker-side model, Fairspk, exhibits a substantial increase in
parity score of 0.136 for Neutral, 0.24 for Happiness, 0.19 for
Anger, 0.12 for Sadness and 0.102 for Frustration in ∆SPrat

as compared to Fairrat. Likewise, Fairrat shows increases par-
ity scores in ∆SPspk across all emotions relative to results
of Fairspk. Moreover, we visualize the model’s embedding
using t-SNE (Fig. 2) by randomly selecting 1500 samples
from Anger-Fairspk and Anger-Fairrat detector by viewing

from the speaker or rater perspective. For example, Fig. 2(b)
plots Fairspk embeddings with color indicate rater’s gender
class (blue is male, red is female). From both Fig. 2 and
Table 2, we can see that although the intra-unfair issue can be
addressed with one-sided fairness learning, the inter-fairness
experiment shows that fairness is not maintained (sometimes
even degrade) when viewing from another viewpoint.

3. TWO-SIDED FAIR SER LEARNING

3.1. Proposed Dynamic Balanced Mechanism
Given the analyses described in the previous section, we pro-
pose to address gender fairness learning through joint train-
ing to derive a “two-sided” model. A most basic approach
is through straight optimizing the summation of LSPK and
LRAT, which can be regarded as a simple multi-task learn-
ing (termed as Basic). In this work, we propose an improved
strategy that dynamically balances the contribution of each
fairness constraint while performing this joint learning, as il-
lustrated in Fig. 1. Specifically, at every batch (n) during
training N batches, we compute the WD distances (DW ) be-
tween speaker debiased embedding (µSPK) and rater debiased
embedding (µRAT) derived from Fairspk and Fairrat. Then we
derive a flexible control parameter (denoted as α) from the
computed distributional distance: DW (µSPK, µRAT). Then, by
anchoring on a fixed one-sided model (e.g., Fairrat), α values
can dynamically determine the extent of the contribution at
every batch from the other side (in this case Fairspk). That is,
a higher α value signifies a further distance between the two
embedding sets, indicating a need for a stronger contribution
of fairness constraint from the speaker-side, and vice versa
for rater-side. The complete balancing strategy is optimized
batch-wise using the following total loss function:

LTotal =
1

N

∑N

n=1
(0.5× LRAT + α× LSPK)n, (3)

α ranges from 0 to 1. No matter whether the viewpoint is
from the rater or speaker, it is the same speech sample pro-
jecting through a network into a fair representation. As learn-
ing happens, the network should learn to move this embed-
ding to a space where both fairness constraints meet. If the
two viewpoints’ embeddings are close, that indicates the two-
sided model already encodes the speech sample into a jointly
fair space; if they are further, the network should consider the
fairness constraint more from that viewpoint to move the em-
bedding. This optimizing strategy is adaptive to within each
batch to alleviate the conflicts, leading to unstable learning.
Our proposed balancing mechanism provides flexible and dy-
namic control during dual-constrained fairness learning.
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Table 3: A summary of the recognition results on each emotion category by F1 (%) with SD and the fairness performance by
∆SP with SD. All numbers are performed based on the average of ten models.

Neutral Happiness Anger Sadness Frustration

F1(%) Basic 66.26 ± 2.277 65.37 ± 1.987 69.70 ± 2.776 69.15 ± 2.406 66.10 ± 2.417
Proposed 68.06 ± 1.241 67.67 ± 1.514 73.09 ± 1.546 71.35 ± 1.119 69.20 ± 1.617

∆SPspk
Basic 0.365 ± 0.082 0.566 ± 0.085 0.302 ± 0.032 0.318 ± 0.045 0.347 ± 0.026
Proposed 0.269 ± 0.025 0.359 ± 0.064 0.254 ± 0.015 0.215 ± 0.027 0.310 ± 0.006

∆SPrat
Basic 0.525 ± 0.039 0.311 ± 0.071 0.257 ± 0.060 0.116 ± 0.028 0.521 ± 0.034
Proposed 0.407 ± 0.043 0.214 ± 0.049 0.222 ± 0.026 0.112 ± 0.014 0.406 ± 0.009

∆SPspk×∆SPrat
Basic 0.192 0.175 0.078 0.037 0.181
Proposed 0.109 0.075 0.056 0.024 0.126

|∆SPspk−∆SPrat|
Basic 0.160 0.255 0.060 0.202 0.174
Proposed 0.137 0.154 0.039 0.103 0.096

3.2. Results and Analyses
We run experiments ten times and also report the standard
deviation (SD) to examine the stability of performances.
We also analyze the balancing behavior from our proposed
gender-neutral model to determine its learning trajectory.
3.2.1. Recognition Performances
Table 3 summarizes the average performance and SD val-
ues over the ten trials for Basic (the basic joint speaker-rater
learning model) and Proposed (our proposed gender-neutral
SER). Our goal is to examine the stability and effectiveness of
our proposed SER model in terms of recognition and fairness
performances. These performances are based on speaker-rater
joint training, therefore, SP values can be regarded as intra-
gender values. Moreover, to demonstrate that ∆SPspk and
∆SPrat are more likely to converge in a joint speaker-rater
fair state, we also report the product and difference between
∆SPspk and ∆SPrat as an additional metric.

Several observations can be noted by looking at both
Table 2 and Table 3. First, we can observe that: (1) Our Pro-
posed SER can maintain a competitive emotion recognition
performance to those of separate one-sided gender-neutral
SER (Fairspk or Fairrat), with the most significant drop being
only 2.41% in the Anger detector. (2) Our Proposed model
shows an enhanced optimal balance in performance, with
relative improvements of 1.8% for Neutral, 2.3% for Hap-
piness, 1.39% for Anger, 2.2% for Sadness, and 3.1% for
Frustration over the Basic. Second, while the performance of
our Proposed model might be slightly lower than the intra-
fairness of one-sided SER, it outperforms the inter-fairness
value of the one-sided SER significantly. As for compari-
son with Basic model, ∆SPspk and ∆SPrat of our Proposed
model performs well for all emotions. At last, we turn our
attention to the stability of joint training. Without a balancing
mechanism between two one-sided models, the Basic model
results in obviously unstable performances in SD, both in
terms of recognition and fairness performances (Proposed
outperforms in every emotion). This is likely attributed to our
balanced mechanism that offers opportunities for adapting
the two one-sided models during the learning process.
3.2.2. Balancing Behavior
To understand the balancing behavior in our proposed gender-
neutral SER, we conduct two analyses on the Anger detector

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.04

0.06

0.08

0.10

0.12
ΔSPspkΔxΔΔSPrat

α

FixedΔalpha
AdjustableΔα
95%ΔCI

(a) The product of ∆SPspk and ∆SPrat

under different fixed α settings.

��� ��� ��� ��� ��� ����

�

�

�

�	��

�

α
(b) Histogram of dynamic control

parameter α.

Fig. 3: Illustration of balancing behavior in Proposed SER.

to understand our balanced learning mechanism. First, we ex-
amine the results obtained when using fixed alpha during our
two-sided training. Specifically, we fixed the α weight, in-
crementing from 0.05 to 0.95 in steps of 0.05. Fig. 3a shows
the results. Black solid line corresponds to fixed alpha, each
of the dotted orange lines indicates a trial of our proposed
SER model, and the grey interval indicates the 95% confi-
dence interval of our approach. It is clear that our proposed
approach obtains a much better fairness metric (lower values
of ∆SPspk×∆SPrat). Second, we can identify which side has
more influence on the fairness of SER. We extract the batch-
wise α values from the Anger detector and present them in
a histogram, as depicted in Fig. 3b. We first note that these
values are diverse and signify the dynamic properties in con-
trolling two-sided learning. Further, the two peaks of α val-
ues located near the 0.25 and 0.75 marks suggest that both
the speaker bias and rater-side bias hold major influences on
the learning toward achieving the model. In short, simply us-
ing a constant α is not adequate for this compounded fairness
learning. Instead, the adaptability of the flexible dynamic bal-
ancing α plays a key role in the reported robustness.

4. CONCLUSION
In this work, we explore and address speaker-rater fairness is-
sues in gender-neutral SER. We first construct the correspond-
ing fair one-sided SER and propose a balancing speaker-rater
fairness mechanism toward realizing gender neutrality in
SER. Our results and analyses reveal interesting insights: 1)
The one-sided fair SER model struggles to adapt effectively
across different viewpoints. 2) The effectiveness and stability
of the dynamic balancing mechanism in mitigating two-sided
biases. We plan to extend our approach to other attributes
beyond gender to continue advancing fair SER models.
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